If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+287x+42=0
a = 49; b = 287; c = +42;
Δ = b2-4ac
Δ = 2872-4·49·42
Δ = 74137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{74137}=\sqrt{49*1513}=\sqrt{49}*\sqrt{1513}=7\sqrt{1513}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(287)-7\sqrt{1513}}{2*49}=\frac{-287-7\sqrt{1513}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(287)+7\sqrt{1513}}{2*49}=\frac{-287+7\sqrt{1513}}{98} $
| x/2+1=-19 | | 2n+16=3n+34 | | 63z^2+61z=-6 | | 32+u=5u | | 3x^2–7=47 | | -12=3x+12 | | -9=-11+b/9 | | 5u-10=0 | | 13x+3=-6 | | 3(4x-2)–14=2(6–2x) | | 8x+5=x+6 | | 5x-3+2x=7+7+6x | | (5v+3)(7v-8)=0 | | 0.12x+0.5(x-5)=0.01(4x-3) | | 26x-5x-3+4=40 | | -4(x+3)+57=35 | | -4(x+3)+5-7=35 | | -x=2=x-5-3x | | 15x+12=3x+36 | | 3(3x+2)-x=2(2+3) | | 4n+18=5n+27 | | 4•x-6=3•x+5 | | 4(7+2x)=57-(x-6) | | 4x-8+x+2=180 | | 2k-2=-13-3k | | m/9-1/2=5/18 | | 4x-2-2x=5 | | 48t^2-147=0 | | -7(m-8)=3m+16 | | -9x+x=72 | | -8+p=p-8 | | 3x=9-5x-13 |